Antiaromaticity-Promoted Radical Anion stability in α-vinyl Heterocyclics

As an electron-rich species, radical anions have a wide range of applications in organic synthesis. In addition, aromaticity is an essential concept in chemistry that has attracted considerable attention from experimentalists and theoreticians. However, it remains unknown whether there is a relationship between aromaticity and thermodynamic stability of a radical anion. In this work, we demonstrate that the thermodynamically stable radical anions could be formed by the corresponding antiaromatic neutral species through density functional theory calculations.

Predicting Dinitrogen Activation by Five-Electron Boron-Centered Radicals

Due to the high bond dissociation energy (945 kJ mol–1) and the large highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) gap (10.8 eV), dinitrogen activation under mild conditions is extremely challenging. On the other hand, the conventional Haber–Bosch ammonia synthesis under harsh conditions consumes more than 1% of the world’s annual energy supply. Thus, it is important and urgent to develop an alternative approach for dinitrogen activation under mild conditions.

Computational predictions of adaptive aromaticity for the design of singlet fission materials

Singlet fission has attracted extensive attention from experimentalists and theoreticians due to its ability to improve photovoltaic conversion efficiency. Still, designing singlet fission materials remains challenging. In this work, we explored the relationship between adaptive aromaticity and singlet fission potentials by computationally screening the adaptive aromatic species reported by our group.

Aromaticity-promoted CS2 Activation by Heterocycle-Bridged P/N-FLPs: A Comparative DFT Study with CO2 Capture

Carbon dioxide (CO2) capture has attracted considerable attention from both experimental and theoretical chemists. In comparison, Carbon disulfide (CS2) activation is less developed. Here, we carry out a thorough comparative density functional theory study to examine the reaction mechanisms of CS2 activation by five-membered heterocycles-bridged P/N frustrated Lewis pairs (FLPs).

A Conjugated Figure-of-eight Oligoparaphenylene Nanohoop with Adaptive Cavities Derived from Cyclooctatetrathiophene Core

A fully conjugated figure-of-eight nanohoop is presented with facile synthesis. The molecule’s lemniscular skeleton features the combination of two strained oligoparaphenylene loops and a flexible cyclooctatetrathiophene core. Its rigid yet guest-adaptive cavities enable the formation of the peanut-like 1:2 host-guest complexes with C 60 or C 70 , which have been confirmed by X-ray crystallography and characterized in solution.

A Genuine Stannylone with a Monoatomic Two-Coordinate Tin(0) Atom Supported by a Bis(silylene) Ligand

The monoatomic zero-valent tin complex (stannylone) {[Si II (Xant)Si II ]Sn 0 } 5 stabilized by a bis(silylene)xanthene ligand, [Si II (Xant)Si II = PhC(N t Bu) 2 Si(Xant)Si(N t Bu) 2 CPh], and its bis-tetracarbonyliron complex {[Si II (Xant)Si II ]Sn 0 [Fe(CO) 4 ] 2 } 4 are reported. The stannylone 5 bearing a two-coordinate zero-valent tin atom is synthesized by reduction of the precursor 4 with potassium graphite.

Adaptive Aromaticity in 16-valence-electron Metallazapentalenes

According to Hückel’s and Baird’s rules, cyclic species are generally aromatic only either in the lowest singlet state (S0) or in the lowest-lying triplet ππ* excited state (T1). Thus, species with aromaticity both in S0 and T1 states (termed as adaptive aromaticity) are particularly rare. Herein, we carry out density functional theory (DFT) calculations to examine the aromaticity of 16e metallapentalenes containing heteroatoms (N, O).

Antiaromaticity-Promoted Radical Stability in α-Methyl Heterocyclics

Aromaticity is a fundamental and important concept in chemistry, and usually, the enhancement of aromaticity brings additional thermodynamic stability to a compound. Moreover, since radicals can act as intermediates in chemical reactions, they have attracted considerable attention from both experimental and theoretical chemists for a long time. However, it remains unclear whether there is a relationship between the thermodynamic stability of cyclic planar radicals and their aromaticity.

Achieving a Favorable Activation of the C–F Bond over the C–H Bond in Five- and Six-Membered Ring Complexes by a Coordination and Aromaticity Dually Driven Strategy

Activating the C–F bond (the strongest σ bond to carbon) is particularly challenging, let alone in a selective fashion when a weaker C–H bond is present in the same species. Herein, we demonstrate a novel strategy to achieve a thermodynamically and kinetically favorable activation of the C–F bond over the C–H bond dually driven by coordination and aromaticity via density functional theory calculations.

Releasing Antiaromaticity in Metal-Bridgehead Naphthalene

As a fundamental chemical property, aromaticity guides the synthesis of novel structures and materials. Replacing the carbon moieties of aromatic hydrocarbons with transition metal fragments is a promising strategy to synthesize intriguing organometallic counterparts with a similar aromaticity to their organic parents. However, since antiaromaticity will endow compound instability, it is a great challenge to obtain an antiaromatic organometallic counterpart based on such transition metal replacement in aromatic hydrocarbons.

Pages