2015

σ Aromaticity Dominates in the Unsaturated Three-Membered Ring of Cyclopropametallapentalenes from Groups 7–9: A DFT Study

Aromaticity, an old but still fantastic topic, has long attracted considerable interest of chemists. Generally, π aromaticity is described by π-electron delocalization in closed circuits of unsaturated compounds whereas σ-electron delocalization in saturated rings leads to σ aromaticity. Interestingly, our recent study shows that σ aromaticity can be dominating in an unsaturated three-membered ring (3MR) of cyclopropaosmapentalene. An interesting question is raised: Can the σ aromaticity, which is dominant in the unsaturated 3MR, be extended to other cyclopropametallapentalenes?

The Clar Structure in Inorganic BN Analogues of Polybenzenoid Hydrocarbons: Does it Exist or Not?

The Clar structure of polybenzenoid hydrocarbons (PBHs) have attracted considerable interest of both theoretical and experimental chemists since it was proposed in the 1950s. However, it remains unclear whether the Clar structure could exist in inorganic PBHs, the boron nitride (BN) analogues where the alternate boron and nitrogen atoms are used to replace the carbon atoms of PBHs. Here, we carry out thorough density functional theory (DFT) calculations to probe the possibility of Clar structures in BN analogues of PBHs.

Stability, Reactivity, Selectivity, Catalysis, and Predictions of 1,3,2,5-Diazadiborinine: Computational Insight into a Boron–Boron Frustrated Lewis Pair

Recent progress in frustrated Lewis pairs (FLPs) has attracted increasing attention. However, most of the FLPs are composed of Lewis basic phosphines and Lewis acidic boranes. In 2015, Kinjo and co-workers reported the first intramolecular boron–boron FLP, namely, 1,3,2,5-diazadiborinine (1), which showed high regioselectivity in the reactions with methyl trifluoromethansulfonate, phenylacetylene, and CO2. More interestingly, the activation of CO2 was found to be reversible when the temperature was elevated to 90 °C.

Five-Membered Cyclic Metal Carbyne: Synthesis of Osmapentalynes by the Reactions of Osmapentalene with Allene, Alkyne, and Alkene

The synthesis of small cyclic metal carbynes is challenging due to the large angle strain associated with the highly distorted nonlinear triple bonds. Herein, we report a general route for the synthesis of five-membered cyclic metal carbyne complexes, osmapentalynes, by the reactions of an osmapentalene derivative with allene, alkyne, and alkene. Experimental observations and theoretical calculations document the aromaticity in the fused five-membered rings of osmapentalynes.

Reactivity of Germylene toward Phosphorus-Containing Compounds: Nucleophilic Addition and Tautomerism

A series of phosphorus-substituted germanium(II) complexes, L1GeR [L1 = CH{(CMe)(2,6-iPr2C6H3N)}2; 2, R = PPh2; 4, R = OPPh2; 5a, R = OP(O)Ph2; 5b, R = OP(O) (OnBu)2; 6a, R = OP(S)Ph2; 6b, R = OP(S)(OEt)2], were synthesized through the direct activation of various organic phosphorus compounds by N-heterocyclic ylide-like germylene 1.

Synthesis of Aromatic Aza-metallapentalenes from Metallabenzene via Sequential Ring Contraction/Annulation

The concept of aromaticity has long played an important role in chemistry and continues to fascinate both experimentalists and theoreticians. Among the archetypal aromatic compounds, heteroaromatics are particularly attractive. Recently, substitution of a transition-metal fragment for a carbon atom in the anti-aromatic hydrocarbon pentalene has led to the new heteroaromatic osmapentalenes. However, construction of the aza-homolog of osmapentalenes cannot be accomplished by a similar synthetic manipulation.

Stabilizing Two Classical Antiaromatic Frameworks: Demonstration of Photoacoustic Imaging and the Photothermal Effect in Metalla-aromatics

Antiaromatic species are substantially less thermodynamically stable than aromatic moieties. Herein, we report the stabilization of two classical antiaromatic frameworks, cyclobutadiene and pentalene, by introducing one metal fragment through the first [2+2] cycloaddition reaction of a late-transition-metal carbyne with alkynes. Experimental observations and theoretical calculations reveal that the metal fragment decreases the antiaromaticity in cyclobutadiene and pentalene simultaneously, leading to air- and moisture-stable products.

Probing the reactivity of microhydrated α-nucleophile in the anionic gas-phase SN2 reaction

To probe the kinetic performance of microsolvated α-nucleophile, the G2(+)M calculations were carried out for the gas-phase SN2 reactions of monohydrated and dihydrated α-oxy-nucleophiles XO−(H2O)n = 1,2 (X = HO, CH3O, F, Cl, Br), and α-sulfur-nucleophile, HSS−(H2O)n = 1,2, toward CH3Cl. We compared the reactivities of hydrated α-nucleophiles to those of hydrated normal nucleophiles.

σ-Aromaticity in an Unsaturated Ring: Osmapentalene Derivatives Containing a Metallacyclopropene Unit

In general, aromaticity can be clarified as π- and σ-aromaticity according to the type of electrons with major contributions. The traditional π-aromaticity generally describes the π-conjugation in fully unsaturated rings whereas σ-aromaticity may stabilize fully saturated rings with delocalization caused by σ-electron conjugation. Reported herein is an example of σ-aromaticity in an unsaturated three-membered ring (3 MR), which is supported by experimental observations and theoretical calculations.

Unexpected 1,2-Migration in Metallasilabenzenes: Theoretical Evidence for Reluctance of Silicon to Participate in π Bonding

Density functional theory (DFT) calculations were carried out to investigate the 1,2-migration in metallasilabenzenes. The results suggested that the chloride migration of metallabenzenes is unfavorable due to the loss of aromaticity in the nonaromatic analogues. In sharp contrast, such a migration in metallasilabenzenes is favorable due to the reluctance of silicon to participate in π bonding. The migration of hydride and methyl group from the metal center to the silicon atom in metallasilabenzenes is computed to be also feasible.