Dalton Trans.

Dalton Transactions

Adaptive Aromaticity in 16-valence-electron Metallazapentalenes

According to Hückel’s and Baird’s rules, cyclic species are generally aromatic only either in the lowest singlet state (S0) or in the lowest-lying triplet ππ* excited state (T1). Thus, species with aromaticity both in S0 and T1 states (termed as adaptive aromaticity) are particularly rare. Herein, we carry out density functional theory (DFT) calculations to examine the aromaticity of 16e metallapentalenes containing heteroatoms (N, O).

Tuning the hyperconjugative aromaticity in Au(III)-substituted indoliums

As a fundamental concept in chemistry, aromaticity has been extended from traditional organics to organometallics. Similarly, hyperconjugative aromaticity (HCA) has also been developed from main group to transition metal systems through the hyperconjugation of the substituents. However, it remains unclear that how the oxidation state of transition metal in the substituents affects the HCA. Herein, we demonstrate via density functional theory calculations that HCA could disappear in indoliums when the Au(I) substituents are changed to the Au(III) ones.

Probing the Tautomerization of Disilenes, Disilabenzenes with Their Isomeric Silylenes: Significant Substituent, Aromaticity and Base Effects

Disilene has attracted considerable interests due to the trans-bending geometry which is significantly different from the planar alkene. However, the equilibrium between disilene and isomeric silylsilylene has not been fully understood. Here, we report a density functional theory (DFT) study on this equilibrium. Calculations reveal significant effects of substituent, aromaticity and base. Specifically, the parent disilene is thermodynamically more stable than the isomeric silylene.

Predicting an unconventional facile route to metallaanthracenes

Metallaaromatics have attracted considerable interest from both experimentalists and theoreticians since the first prediction of metallabenzenes, in which a CH group is replaced by a transition metal fragment. In comparison with monocyclic metallabenzenes and bicyclic metallanaphthalenes, tricyclic metallaanthracenes are quite less developed. Thus, it is urgent to explore synthetic methods for this rare system. Here we report a thorough investigation on the formation of metallaanthracenes from transition metal fluorenyl complexes via density functional theory calculations.

Synthesis of aromatic ruthenabenzothiophenes via C–H activation of thiophenes

The first ruthenabenzothiophenes have been achieved via the C–H activation of thiophene. These species feature high thermal stability and resistance of a moderate oxidant, which constitute valuable addition to the rare metallaaromatic containing second-row transition metals.

http://pubs.rsc.org/en/content/articlelanding/2015/dt/c5dt04557f#!divAbstract

Theoretical study on the stability of osmasilabenzynes

Metallabenzyne has attracted considerable interest from theoreticians and experimentalists since its first isolation in 2001. However, metallasilabenzyne, formed by the replacement of the carbyne carbon with a silicon atom in metallabenzyne, has never been reported either theoretically or experimentally. Here we carry out density functional theory (DFT) calculations on this system for the first time. Our results reveal a polarized and weak Os–Si triple bond in osmasilabenzyne due to the reluctance of the silicon to participate in π bonding.