Organometallics

Predicting the Hyperconjugative Aromaticity in Cyclopentadiene Containing Group 8 Transition Metal Substituents

Hyperconjugative aromaticity, an integration of two chemical concepts, aromaticity and hyperconjugation, was first proposed in 1939. Recently, breaking through the main group elements, the hyperconjugative aromaticity has been successfully extended to the transition metal system, including groups 7, 9, 10, and 11 organometallic substituents. Here, we demonstrate that the missing group 8 transition metal substituents also possess a powerful ability to induce hyperconjugative aromaticity in cyclopentadiene via density functional theory calculations.

Harmonic Oscillator Model of Aromaticity for Organometallics Containing the Os–C Bond

Aromaticity is an important concept in chemistry with multidimensional properties, attracting considerable attention from both experimental and computational chemists. Among various aromaticity indices, the harmonic oscillator model of aromaticity (HOMA) is a reliable aromaticity criterion with a negligible computational cost based on the geometry (bond distance). However, the HOMA parameters for organometallic aromatics are not available. Here, we develop the Os–C bond parameter of HOMA by theoretical calculations.

Probing the Hyperconjugative Aromaticity of Cyclopentadiene and Pyrroliums Containing Group 7 Transition Metal Substituents

Aromaticity and hyperconjugation are two fundamental concepts in chemistry. Combining them together led to the proposal of the concept of hyperconjugative aromaticity by Mulliken in 1939. Now, it has been attracting considerable attention from both theoretical and experimental chemists. Recently, the concept of hyperconjugative aromaticity has been extended from main-group substituents to transition metal systems including groups 9, 10, and 11 transition metal substituents.

Predicting Dinitrogen Activation by Carborane-Based Frustrated Lewis Pairs

Activation of atmospherically abundant dinitrogen (N2) under mild conditions has been a great challenge in chemistry for decades because of the significantly strong N≡N triple bond. The traditional strategy of N2 activation was mainly limited to metallic species until the ground-breaking achievement of N2 activation by two-coordinated borylenes was achieved experimentally in 2018. On the other hand, carborane derivatives have attracted considerable interest for small-molecule activation. Still, the utilization of carborane derivatives in N2 activation remains elusive.

Achieving a Favorable Activation of the C–F Bond over the C–H Bond in Five- and Six-Membered Ring Complexes by a Coordination and Aromaticity Dually Driven Strategy

Activating the C–F bond (the strongest σ bond to carbon) is particularly challenging, let alone in a selective fashion when a weaker C–H bond is present in the same species. Herein, we demonstrate a novel strategy to achieve a thermodynamically and kinetically favorable activation of the C–F bond over the C–H bond dually driven by coordination and aromaticity via density functional theory calculations.

Adaptive Aromaticity in Metallasilapentalynes

Cyclic molecules with 4n + 2 or 4n electrons are aromatic in the lowest singlet state (S0) or the lowest triplet state (T1) according to Hückel and Baird’s rules. Thus, the design of aromatic species in both the S0 and T1 states (termed as adaptive aromaticity) is particularly challenging. In this work, we demonstrate that metallasilapentalynes show adaptive aromaticity supported by structural, magnetic, and electronic indices, in sharp contrast to metallapentalynes, which exhibit aromaticity in the S0 state only.

Antiaromaticity-Promoted Activation of Dihydrogen with Borole Fused Cyclooctatetraene Frustrated Lewis Pairs: A Density Functional Theory Study

Aromaticity and frustrated Lewis pairs (FLP), two important concepts in chemistry, have attracted considerable attention from theoretical and experimental chemists. However, combining these two concepts together for H2 activation is less developed. Herein, we report a density functional theory study on antiaromaticity-promoted H2 splitting. The antiaromatic borole (as Lewis acid) and aromatic pyridine (as Lewis base) were introduced into the cyclooctetraene skeleton. Due to the geometric constraints, such systems can be classified as FLPs.

Adaptive σ Aromaticity and Triplet Ground State in Tetraatomic Boron Species

In comparison with the widely recognized π aromaticity, σ aromaticity is a less developed concept in chemistry, especially for unsaturated systems. Moreover, most studies on σ aromaticity have been mainly limited to the ground state of saturated systems; unsaturated species with σ aromaticity in the excited state have never been reported.

Probing the Aromaticity and Stability of Metallatricycles by DFT Calculations: Toward Clar Structure in Organometallic Chemistry

Metallaaromatics have attracted considerable attention in recent years because they can display properties of both organic and organometallic species. However, it remains unclear whether Clar’s rule could be applied to organometallic chemistry despite its proposal in 1950s. Here, we investigate the relative stabilities of 49 organic and organometallic species by density functional theory (DFT) calculations.

Probing the Strongest Aromatic Cyclopentadiene Ring by Hyperconjugation

Hyperconjugation, an interaction of electrons in a σ orbital or lone pair with an adjacent π or even σ antibonding orbital, can have a strong effect on aromaticity. However, most work on hyperconjugative aromaticity has been limited to main-group substituents. Here, we report a thorough density functional theory study to evaluate the aromaticity in various cyclopentadienes that contain both main-group and transition-metal substituents.

Pages