benzene

Probing a General Strategy to Break the C-C Bond of Benzene by a Cyclic (Alkyl)(Amino)Aluminyl Anion

The oxidative addition of C-C bonds in aromatic hydrocarbons by low valent main group species has attracted considerable attention from both theoretical and experimental chemists due to the big challenge in breaking their aromaticity. Here, we demonstrate a general strategy to break the C-C bonds in benzene by cyclic (alkyl)(amino)aluminyl anion via density functional theory (DFT) calculations.

Predicting an Antiaromatic Benzene Ring in the Ground State Caused by Hyperconjugation

Benzene, the prototype of aromatics, has six equivalent C‐C bonds (1.397 Å), which are intermediate between a C‐C double bond and a C‐C single bond. For over 80 years, chemists have spent much effort on freezing a localized structure to obtain a distorted bond‐length alternating benzene ring in the ground state, leading to various localized trisannelated benzene rings. However, most of the central benzene rings are still aromatic or nonaromatic. Here we report an antiaromatic benzene ring caused by hyperconjugation.