Alkynes

Phosphine-Stabilized Germylidenylpnictinidenes as Synthetic Equivalents of Heavier Nitrile and Isocyanide in Cycloaddition Reactions with Alkynes

The reactions of chlorogermylene MsFluindtBu-GeCl 1, supported by a sterically encumbered hydrindacene ligand MsFluindtBu, with NaPCO(dioxane)2.5 and NaAsCO(18-c-6) in the presence of trimethylphosphine afforded trimethylphosphine-stabilized germylidenyl-phosphinidene 2 and -arsinidene 3, respectively. Structural and computational investigations reveal that the Ge–E′ bond (E′ = P and As) features a multiple-bond character.

Catalytic hydroboration of aldehydes, ketones, alkynes and alkenes initiated by NaOH

Commercially available NaOH powder is shown to be an efficient transition-metal-free initiator for the catalytic hydroboration of aldehydes, ketones, alkynes and alkenes with HBpin and 9-BBN under mild conditions. Combined experimental and theoretical studies suggest that the catalytically active species is a boron hydride generated in situ from the reaction mixture.

http://pubs.rsc.org/en/content/articlelanding/2017/gc/c7gc01632h#!divAbstract

Reactions of [Cp*Ru(H2O)(NBD)](+) with dihydrogen, silanes, olefins, alkynes, and allenes

Formal [2+2+2] addition reactions of the NBD ligand in [Cp*Ru(H2O)(NBD)]BF4 (NBD = norbornadiene) with H-2, Ph3SiH, ArCH=C=CH2, and RC=-CPh were observed. In contrast, olefins such as styrene and NBD do not undergo similar [2+2+2] addition reactions with [Cp*Ru(H2O)(NBD)]BF4. [Cp*Ru(H2O)(NBD)]BF4 reacts with H-2 in benzene to give [Cp*Ru(eta(6)-C6H6)]BF4 and nortricyclene. Similarly, [Cp*Ru(H2O)(NBD)]BF4 reacts with Ph3SiH to give [Cp*Ru(eta(6)-C6H5SiPh2OH)]BF4 and nortricyclene.